8 research outputs found

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Quarc: a high-efficiency network on-chip architecture

    Get PDF
    The novel Quarc NoC architecture, inspired by the Spidergon scheme is introduced as a NoC architecture that is highly efficient in performing collective communication operations including broadcast and multicast. The efficiency of the Quarc architecture is achieved through balancing the traffic which is the result of the modifications applied to the topology and the routing elements of the Spidergon NoC. This paper provides an ASIC implementation of both architectures using UMCpsilas 0.13 mum CMOS technology and demonstrates an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs

    Communication modeling of multicast in all-port wormhole-routed NoCs

    No full text
    Multicast is one of the most frequently used collective communication operations in multi-core SoC platforms. Bus as the traditional interconnect architecture for SoC development has been highly efficient in delivering multicast messages. Since the bus is non-scalable, it can not address the bandwidth requirements of the large SoCs. The networks on-chip (NoCs) emerged as a scalable alternative to address the increasing communication demands of such systems. However, due to its hop-to-hop communication, the NoCs may not be able to deliver multicast operations as efficiently as buses do. Adopting multi-port routers has been an approach to improve the performance of the multicast operations in interconnection networks. This paper presents a novel analytical model to compute communication latency of the multicast operation in wormhole-routed interconnection networks employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    An analytical model of broadcast in QoS-aware wormhole-routed NoCs

    No full text
    Networks-on-Chip (NoC) emerged to address the technological and design issues related to development of large systems-on-chip (SoCs). Due to diversity of the application's performance requirements, most NoC architectures offer supports for quality of service (QoS). Also, to utilize the available bandwidth efficiently, they might implement mechanisms for delivering collective communication operations. This paper presents an analytical model to predict the average latency of wormhole-routed prioritized broadcast communication in NoCs. The model assumes that the network uses all-port routers scheme and offers differentiated services-based QoS. To verify the analysis, the model predictions are compared against the results obtained from a discrete-event simulator developed using OMNET++

    An analytical performance model for the Spidergon NoC with virtual channels

    No full text
    The Spidergon Network-on-Chip (NoC) was proposed to address the demand for a fixed and optimized communication infrastructure for cost-effective multi-processor Systems-on-Chip (MPSoC) development. To deal with the increasing diversity in quality of service requirements of SoC applications, the performance of this architecture needs to be improved. Virtual channels have traditionally been employed to enhance the performance of the interconnect networks. In this paper, we present analytical models to evaluate the message latency and network throughput in the Spidergon NoC and investigate the effect of employing virtual channels. Results obtained through simulation experiments show that the model exhibits a good degree of accuracy in predicting average message latency under various working conditions. Moreover an FPGA implementation of the Spidergon has been developed to provide an accurate analysis of the cost of employing virtual channels in this architecture

    An analytical comparison of the spidergon and rectangular mesh NoCs

    No full text
    Networks on chip (NoC) emerged as a structured and scalable communication medium for development of future Systems-on-Chip (SoC). Due to its unique features in terms of scalability and ease of synthesis, the (rectangular) mesh topology is regarded as an appropriate candidate for on-chip network development. On the other hand, the Spidergon NoC has been proposed as an alternative topology to realize cost effective multi-processor SoC (MPSoC) development. This paper presents analytical models of the average message latency and network throughput for both rectangular mesh and the Spidergon NoC employing wormhole switching. For each model, the validity of the analysis is verified by comparing the analytical model against the results produced by a discrete event simulator. Using the developed models, we then compare these topologies from different perspectives including manufacturing issues, message latency and network throughput
    corecore